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Abstract

In this document we present the second draft of a secure multi-party chat protocol meant to address a variety of use-cases. We include
its design rationale, choice of security features, adversarial models, schematic and detailed specification of sub-protocols and primitives.
The second draft is built on the commentary received from the specifications review team.

I. INTRODUCTION

for use in a variety of real-world use cases.

In the following section we skim over relevant publications and their results. In Section III, we describe our approach
and choice of security features. In Section IV, we overview the properties that we are aiming for in this protocol. In
Section V we give basic mathematical definition needed to model the chat session and security proofs for various security
aspects of the protocol. Section VI provides definitions and references to the adversarial models for each property. In
Section VII we describe various parts of the protocol and present choices for each sub protocol and primitives for each
step of the general protocol. In Section VIII, we present the revised draft of mpCat. Finally, we conclude by describing
the remaining steps.

IN this document we describe the rationale behind the design of mpCat, a secure multi-party chat protocol meant

II. HISTORY AND LITERATURE REVIEW

Internet chat. OTR authors argue that using PGP for Internet chat is problematic due to the PGP scheme’s lack
of forward secrecy and deniable transcript features. These properties are expected in Internet chat, since it mimics
casual day-to-day real-world conversations where future deniability is implicit.

[BGB04] offers OTR as an alternative approach to PGP for simulating casual two party chat on the Internet. While
OTR uses symmetric encryption and message authentication to secure confidentiality and message integrity, it uses
Diffie-Hellman key exchange as an approach to deniably authenticate the other party in the chat.

There have been various security analyses and some criticisms of OTR since its introduction in 2004. For example, [BM]
shows that the unauthenticated exchange of the OTR version identifier can pose a threat to authenticity: the adversary
can force clients to downgrade to an older, insecure version of the protocol. They also make note of the Diffie-Hellman
key exchange failure in delivering authentication in the presence of an active adversary. Furthermore, they show that the
early publication of MAC keys for the purpose of forgeability can easily enable the active adversary to forge messages
during the conversation (instead of the intended forgeability after the conversation has ended). Finally, they argue that
in an environment where the adversary is controlling the whole network, she can effectively disarm the protocol of its
forgeability property.

In [RGKO05], researchers criticize OTR’s approach in which the authenticity of the renewed ephemeral session keys
is provided by the property of confidentiality, and is therefore dependent on the secrecy of the conversation. Hence,
breaking the secrecy of the conversation (by the leak of the session key, for example) will lead to false authentication
as well. They offer two authenticated deniable key exchange protocols, which also provide forward secrecy, as a
replacement for OTR’s original key exchange. Furthermore, they argue that forgeability and malleability do not have any
mathematical consequence in improving deniability if the parties have been authenticated by a deniable key exchange
scheme. They argue that as these properties pose potential security threats, it is desirable to omit them from the protocol
entirely.

In [GUVGC09], the authors offer a generalization of two-party OTR to the multi-party case. However, they do
not specify the cryptographic primitives, neither do they give a formal definition of the adversaries or the proof of
algorithm’s security (reduction). Although a more robust key exchange is proposed, some primary performance analysis

Two-party off the record messaging (OTR) has been introduced in [BGB04] as a better alternative to PGP for casual
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of the implementation of the key agreement protocol has been shown to be impractically slow, especially on mobile
devices.

Various attempts have been made to construct an efficient multiparty (known as group) authenticated key exchange
protocol. Protocols proposed in [BCP01] and [BCPQO1] have been shown to be not secure against various adversarial
models [GBNM11] [Man06]. [BVS05] shows that the protocol introduced in [KLLO04] is not secure against replaying the
user’s message in another chat. The authors offer a slightly modified version of the protocol to remedy this.

Authors of [RGKO05], introduce 2 protocols with forward secrecy to replace the vulnerable deniable authentication of
OTR. Both [RGKO5] and [BS07] argue that SIGMA does not meet the definition of a truly deniable algorithm and the
latter shows how it fails the deniability adversarial model introduced in [BS07]. Alternatively, [BS07], using the Schnorr
zero-knowledge proof and signature algorithm, introduce a 4-round challenge-based authentication scheme that grants
deniability to the two-round authenticated protocol described in [BVS05].

[ACMP10] offers a more efficient protocol than [BS07], in the sense that ephemeral Diffie-Hellman elements are
reusable to regenerate keys when some of the participants change. As such, it offers a one-round protocol to generate a
key for a subgroup of the original conversation.

In designing mpCat’s deniable authentication and key agreement protocol, we have followed the main idea of [BS07]
of choosing a provably secure authenticated key exchange method and replacing the signature based authentication with
a deniable one. We have chosen the protocol introduced in [ACMP10] instead, due to its efficiency superiority. We have
chosen the two round SKEME-based Triple Diffie-Hellman deniable key authentication instead of Schnorr signature
scheme suggested in [BS07] for it saves us two critical rounds for authentication. We have also modified the protocol to
represent the chat condition where participants sequentially join and leave the chat.

Another major difference between mpCat and the suggested original protocol for mpOTR in [GUVGC09] is transcript
authentication for every time a participant receives a message. This is an optimistic approach based on the assumption
that the XMPP server provides a reliable and orderly message delivery.

III. DESIGN RATIONALE

encrypted multiparty chat protocols that apply to a variety of use-cases. Our approach for the mpCat design was

THe main motivation behind the development of mpCat is the lack of provably secure, implementable, end-to-end
based on the following rationales, listed in order of importance:

e A protocol that is provably secure in a sufficiently strong adversarial model which addresses the most urgent
requirement of users in need of security. These are confidentiality, authenticity and forward secrecy.

e Usability according to real world use cases, including asynchronous use cases.
e Providing some degree of deniability when it does not hurt usability or our fundamental security goals.

e Addressing security flaws in the OTR protocol.

To achieve these goals, we focused our studies on the OTR protocol and various subsequent protocols evolved from
OTR such as [Sys], as well as papers offering security analysis of the original OTR protocol. We designate the protocol
suggested in [GUVGCO09] as our starting point and apply various modifications to reach a desirable protocol which
satisfies our goals.

A significant portion of this research suggests a better performing, more secure alternative to the key exchange
protocol suggested in [GUVGC09] which is considered by various researchers to be one of the most troubling and
inefficient aspects of the proposal.

Additionally, based on the conclusions of [BM] and [RGKO05], we are taking the following points into consideration:

e Using a more secure deniable key exchange algorithm instead of naive Diffie-Hellman and a more practical
algorithm rather than the peer-to-peer signature key exchange suggested in [GUVGC09].

e Omitting forgeability and malleability from the protocol as recommended by [RGKO05] and refraining from
broadcasting the expired ephemeral authentication keys. We propose the possibility of using block-based, rather
than stream-based, encryption for the symmetric encryption primitives.

o Offering provably secure models for every aspect of the algorithm which we have singled out as critical to every
day use cases.
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IT1.1

On Deniability

Deniability can be partially achieved by using a deniable key exchange algorithm. At this stage of the design we do not
define an adversarial model for deniability. However, as our deniable authentication takes the same approach of [BS07],
it seems possible to prove deniability based on the model introduced in [BS07].

IV. SEecuURrITY PROPERTIES

MPCat aims to secure the following properties in a multi-party chat session:

Participant deniable authenticity based on their long term persistent identity: While a participant in a chat can be
sure of another participant’s authenticity, they cannot prove their confidence to anybody else.

Message origin authenticity against both outsider intrusion and the impersonation of existing participants by
other malicious participants in the session.

Transcript integrity, where all participants are confident that they have been participating in the same conversation;
that is, they are confident that they have seen the same messages.

Confidentiality of the conversation so its content is not accessible by an outsider.

Forward secrecy of the conversation, so its content remains inaccessible in the event of the long term private key
of a participant (which represents their long term identity) being compromised after session key establishment.

According to each requirement, we need to examine our protocol against the adversaries of

1
2
3.
4
5

. Deniable authenticated key exchange.

. Message origin authenticity.

Consensus.

. Confidentiality.

. Forward secrecy.

V. CHAT SESSION MODEL

In modelling our chat session for various adversarial model and protocol specifications, we are following the notation
of [GBNM11].

Definition 1 Multi-party chat session: Let U = {Uj, ..., Uy } be the set of possible participants. A multi-party chat session is
an ordered pair S = (S, sid) in which S C U and sid is the unique session id. Furthermore, it is assumed that party U is presented
and identified verifiably by a long-term persistence key pair (PKy, SKyz).

Definition 2 An authenticated group key exchange (AGKE) is Algorithm 7t that each honest party will execute. For the sake
of defining AGKE we need the following definitions:

Session id as seen by U: Session id sid will be derived during the run of the protocol. The session id is computed by
(the instance of the protocol run by U) and is indicated by sidy;.

Participant list: plist{; is the list of participants which U believes are participating in the chat session .
Session key as seen by U: ski; is the session key as computed by ;.
Accepted state: A party enters the accepted state if it computes skf, and has detected no errors in the protocol.

Partnered instances: Two instances 1ty and e are considered partnered if and only if both instances have accepted
sidy = sidyy and plisty = plistyp.

We say an AKGE algorithm is valid, if in the case of a network which correctly forwards all messages without modification, all
participants ultimately are partnered and all compute equal sky’s.



mpCat - A Secure Multi-Party Chat Protocol e Second Draft e June 2014

VI. ADVERSARIAL MODELS

Dversarial models are explained as a game, in which the advantage of the adversary winning the game should
Abe translatable to the advantage of breaking the cryptographic primitives.

Accordingly to our requirement, we need to examine our algorithm against the adversaries of

1. Deniable Authenticated key exchange (including a forward secrecy adversary)

2. Message origin authenticity

3. Confidentiality

4. Consensus

In following sections, we are defining adversaries which represent the threats concerning us in each of above
properties.

VI.1 Deniable Authenticated Key Exchange Adversary

We use the adversarial model for authenticated key exchange from [GBNM11]. which can promise resistance against
internal/external key compromise impersonation (KCI). Similar models have been introduced in [BVS05] [ACMP10].
The deniability adversary is presented in [BS07].

VI.2 Message Origin Authentication Adversary

The message origin adversary is a typical adversary against a signature scheme.

VI.3 Message Confidentiality Adversary

The goal of adversary A, is to read at least part of the transcript during the session. A, may only begin acting after the
session key skg is established and all instances agree on plist, and assuming no party is corrupted by A..

Initially, a secret random bit b is generated. The adversary sends two sequences to instance 7ry;: (Mg, My ;). In reply,
mry broadcasts Cp; = Eg,, (My;) where Eg(M) is mpCat’s encryption scheme encrypting message M with key K. A,
wins if its guess of b’ has a non-negligible prob(b’ == b).

As we use AES in counter mode, the proof of confidentiality of the message encryption goes along the same lines of
the standard proof of the same scheme.

VI.4 Forward Secrecy Adversary
We do not define an independent forward secrecy adversary. Forward secrecy can be derived by resistance against the
confidentiality adversary as well incorporating a forward secure key exchange as described in [GBN10].
VL5 Consensus Adversary
Definition 3 Consensus Adversary Acon is given the ability to corrupt, reveal the key, and impersonate participants at all stages
of the session. We say Acon wins if the protocol is secure in our key exchange security assumption and there are at least two
uncorrupted parties U, U’ for which U and U’ accept unequal session transcripts Ty # T|;.
VII. Protocor HiGH LEVEL DESIGN
0 achieve security properties mentioned in section IV, we break the protocol in following sub-protocols:
1. Deniable authenticated signature key and session key exchange, where participants deniably authenticate each
other and agree on a common session key, meanwhile exchanging ephemeral signing keys.

2. Communication, where parties send authenticated confidential messages.
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3. Consensus verification, where parties verify that all have received and seen identical transcript during the chat
session.

Our choice of sub-protocols for mpCat has been to use the same sub-protocols and primitives suggested in [BGB04]
and [GUVGCO09], unless there has been a practical or security-related reason to deviate from those recommendations.

We have completely replaced the session and signature key establishment protocol as the original choice of [GUVGC09]
for this phase proved impractical in previous implementations. We have moved to elliptic curve cryptography to save on
key and signature length in asymmetric primitives.

Following the conclusion of [RGKO05] we have dropped forgeability (mandatory publication of ephemeral signa-
ture/MAC keys) and malleability. As it is argued in [RGKO05], the deniability of the protocol is based on deniable
key exchange, and while they increase the complexity of the algorithm, the above properties do not mathematically
contribute to deniability. Taking this step also significantly improves the efficiency of the protocol which is a main focus
for mpCat.

We ensure consensus whenever the underlying transport layer guarantees the reliable delivery of the messages in the
same order for all participants.

In the following section we briefly describe our choice of the sub-protocol for each of the required tasks for a
multi-party chat session.

VII.1 Design of Deniable Authenticated Signature Key Exchange

We have chosen our deniable signature key exchange protocol following the conclusions in [Gunl3a] - by identifying a
secure key exchange protocol that satisfies our needs. We then apply the triple Diffie-Hellman authenticated exchange to
grant it properties of deniability. Subsequently, one can apply the same approach presented in [Gun13a] to communicate
ephemeral signature keys during the key establishment process. However, for efficiency, we use the same ephemeral
Diffie-Hellman secret and public values to produce ephemeral signatures.

For the choice of the base authenticated key exchange protocol, we suggest a variant based on [ACMP10]. The
rationale of the choice can be itemized as follows:

e The base of the design of the protocol in [ACMP10] is the same as in [BVS05]. However, a simpler protocol is
presented in [ACMP10].

o [ACMPI10] offers a peer-to-peer key exchange with no extra rounds, if needed.

e [BVS05] and [ACMP10] are superior to the widely studied [BCPQO1] and its dynamic variation [BCP01] both in
security (against malicious insiders) and performance (O(1) rounds).

e [BVS05] has been suggested by [Gun13a] for the reason described in [Gun13b]. We believe that the new deniable
authentication approach, as it is similar to the SKEME protocol, should satisfy the properties of deniability
which [BVS05] considered crucial.

e Security analysis of [GBNM11] and [BCGNP08] both find [BVS05] is provably secure against all attacks (including
the insider attacks) they consider.

e It is a two-round protocol and hence offers competitive efficiency considering the security property that it provides.

e The security proof of [BVS05]and [ACMP10] in the random oracle model is acceptable considering the importance
of usability and efficiency as our goals.

e [BVS05] has existed for years and its various security aspects have been investigated by several researchers
including [GBNM11] and [BCGNPO08] which gives [BVS05] an advantage over newer algorithms.

e [ACMP10] only needs one round key re-agreement in case of a participant leaving the chat, while [BVS05] enforces
re-computation of Diffie-Hellman ephemeral keys and hence needs a minimum of two rounds plus overhead of
re-authenticating the new ephemeral keys. This can significantly improve the efficiency of casual chat sessions
where participants frequently enter and exit the chat.

o Triple Diffie-Hellman authenticated key exchange only needs two rounds of communication and can be done
alongside the key agreement steps, while the Schnorr based algorithm suggested in [BVS05] needs four rounds.
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VII.2 Message Authentication

As message authentication needs to be resistant to malicious insiders, following the original [GUVGC09], mpCat signs
each message using a public key signature scheme. ED25519 has been chosen as the signature primitive due to its
efficiency and more secure implementability over other elliptic-curve digital signature algorithms. The messages are
signed with the ephemeral key of the sender. The authenticity of the origin can be verified by the public ephemeral key
of the party distributed during the key exchange period.

VIL.3 Message Encryption

We are using AES-256 in counter mode with a shared group key for message encryption, as suggested by the original
OTR protocol.

VII.4 Transcript Authentication

Because each message sent by each participant is signed by the ephemeral private key generated for the specific session,
it is not possible for the internal or external adversary to forge a message on behalf of an uncorrupted participant.

However, if the adversary is controlling the network structure, denial or delay of service is always possible. Hence,
the consistency of the transcript (meaning that all participants see the same transcript in the same order) relies on the
means of transport guaranteeing reliable delivery, with a single order, to every participant.

The protocol offered in this document examines the transcript for such consistency. In the case that the underlying
transport fails to provide this level of consistency, obviously the consistency test will fail. However, our design ignores
failure that is due to the absence of a reliable transport.

mpCat performs transcript authentication whenever a message is received. This is to guarantee consensus and protect
the protocol against the consensus adversary. The procedure is similar to the procedure described in [GUVGC09], except
we also require message order to be preserved for the following reasons:

1. XMPP, as the main protocol in focus for this design, delivers messages to all clients in the same order.

2. The mpCat protocol detects if the adversary has mingled with the order of the messages rather than only dropping
undesirable messages

3. It is simpler to authenticate an ordered transcript compared to an unordered transcript.

VIL.5 Asynchronous communication and Forward Secrecy

The protocol is primarily targeted to synchronous cases, however, with some modification it can be used for asynchronous
cases.

Provided that the participants are not concerned with authenticating the list of participants (it is OK if Eve imperson-
ates Bob as long as she is unable to read Bob’s emails) participants can communicate using their pairwise exchanged
ephemeral Diffie-Hellman keys, until all participants finish the second round of authentication.

As soon as a deniable handshake has been established among a set of participants, any subset of them can
communicate and authenticate their messages using the “session key” and their ephemeral signature key.

The protocol does not enforce explicitly a time limit on renewing the session key shares and can be used for an
asynchronous high latency transport after the key establishment state.

The downside of using a session key for a long time is that a compromised session key will reveal all past
communication during that session. This does not pose an imminent threat when the life span of a chat is short. However,
in the context of asynchronous high latency transport, it is of a more serious concern.

The protocol requires the participants to preemptively update their ephemeral signature/shares and propagate them
as part of the messages they are already sending. Subsequently, they also update their key share with their neighbours,
as soon as the neighbours also propagate their new ephemeral signature keys.

As the assumption of having a continuous heartbeat might not be realistic in various asynchronous cases, implemen-
tations can assume specific deadlines for dropping users who did not communicate their new keys or shares.

Because communicating multiple keys and shares might be more time consuming as compared to a dual party chat,
the protocol can be extended to use the hybrid key exchange and hash ratchet model described in [Per] to provide some
level of forward secrecy before the session key gets updated.
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VIII. MrCAT PrROTOCOL: STEP BY STEP

N this section, we present the mpCat protocol in algorithmic format. All user Ids should be considered modulo
number of participants in the room.

At a glance, deniable authentication is derived from the triple Diffie-Hellman algorithm presented in [Sys]. Joining
the room is a variation of the two-round mBD+P protocol presented in [ACMP10] where the authentication step has
been made deniable. Leaving the room is the one-round mBD+S from [ACMP10].

VIII.1 Schematic view of the key exchange

For simplicity, group operation is written multiplicatively, although it is actually elliptic curve points operation,
traditionally represented by addition.

Rnd Description Pseudo-code
1 Generate ephemeral DH private key x;j < [0, order(g)]
Generate DH key for BD, Triple DH and Signature yi < gt
Broadcast User identity and the DH key (Ui, y;)
2 Compute Session Id sid; <— (Uq|ya] - - - [Unlyn)
Generate Triple Diffie-Hellman P2P keys kij < |H(y;'", LP].XI', y;i)

Generate key confirmations ’ kej < (H(ki1, Uy), ..., H(kj,, Uy)) ‘
Generate secret shares Zf,l  H(kj;1,sid;),z;, < H(kj;y1,5id;)

Generate public shares zi <z, @7z,
Sign identity, shares 0; < Signy, (Uj, z;, sid)
Broadcast key shares and confirmation (Uj, z;, sigmay, | ke; )
- Check validity of key confirmation keilj] == kejfi] for j € {1,...,n}
Check public shares 21D Dzy ==0
Check signatures verifyy,(oj) for j € {1,...,n}
Recover secret shares Zi, 2,07
Generate session key ki < H(z}, ...z, sid;)

VIIL.2 Chat setup

In almost any practical case, participants join the chat sequentially. It is assumed that multiple participants cannot join
simultaneously. For the sake of efficiency one can tweak the implementation to have a threshold to wait and start a chat
with more participants. However, this makes the implementation significantly more complicated without an evident
efficiency benefit.

Therefore, our assumption is that a secure chat is always set up when a participant starts the chat room. Additional
participants would be added sequentially using Algorithm VIIL.3, as they enter the chat. Algorithm 1 describes the chat
room setup protocol.
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Algorithm 1 Chatroom setup

1: procedure CHAT INITIATOR INIT(newRoomName, participantNick)

2 Global myld :=1

3 Global Nicky, 14 := participantNick

4 Global roomName := newRoomName

5: Global xyy14, Ymy1a := GENERATE INITIAL PARAMTERS(1myId)

6 Global signatureKeyy1a := (Xmy1d, Ymy1a)

7 participantList := [Nick,14]

8: ephemeral PublicPointList := [Yuy14, Yother]

9: end procedure

10: procedure VERIFY VERIFIER GENERATE INIT KEY(schnorrRandomPoint e, HOothers Uothers Yotherr NiCkother)
11: VERIFY VERIFIERS

12: Global sessionKey := SHA-512(X,, 1aYother, SessionId)

13: toBeSigned := SHA-512(SHA-512(sessionId||SHA-512(y1,v1)||[SHA-512(y2, v2)))
14: SIGN SESSION AND SEND(foBeSigned)

15: end procedure

VIIL.3 Joining

Joining a chat involves two different procedures: the Join procedure, described in Algorithm 2, which runs on the new
participant’s instance, and an Accept New Participant Procedure, described in Algorithm 3, which runs on the clients of
participants that are already in the chat.

When a new participant U, 1 joins the chat, current participants can still use their established authenticated ephemeral
public key (to derive the sessionKey,.,, and as their signature verification key). Confidentiality of sessionKey,;; is guarded
against the new participant by Diffie-Hellman key shares hashed alongside the session id (which is dependent on the
list of participants). The new participant cannot combine the old and new shares to recover sessionKey,;;. The fact that
old participants do not need to compute new ephemeral keys (and re-verify their ephemeral identities) decreases the
computational complexity of the protocol.

Algorithm 2 Join

1: procedure JoiN(newRoomName, Nicknamey,, 14, participantld)
2: Global myld := participantld

3 Global roomName := newRoomName

4 XmyldsYmyld *=GENERATE INITIAL PARAMETERS(Participant ID myld)

5: Global signatureKeyy1a := (Xmy1d, Ymy1a)

6 Broapcast(“:3mpCat:3Join:3”, myld, Nickname,y14, Yy14)

7 Global participantList, ephemeral PublicPointList := RECEIVE

8 Global sessionld := CoMPUTE SEssION ID(roomName, participantList, ephemeral PublicPointList)
9: S16N AND SEND KEY CONFIRMATION AND SHARES

10: WAart ON RecCEIVE(”:3mpCat:3KeyConfirmationShare:3”)

11: Global keyShareList, keyCon firmationList, signatureList := RECEIVE
12: VERIFY KEY CONFIRMATIONS AND SIGNATURES(keyCon firmationList, signatureList)
13: UPDATE SESSION KEY

14: end procedure

15: procedure RECEIVE SESSION DIGEsT(currentSession HistoryDigest)

16: Global sessionDigest := currentSession HistoryDigest

17: end procedure

VIII.4 Leave

Leaving a chatroom involves only one procedure for those who are staying in the chatroom (Procedure Farewell) which
is described in Algortihm 4. The remaining participants only need a notice from the server that the user is leaving to
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Algorithm 3 Protocol for other participants already in the chat to accept the newcomer

1: procedure AcCErT(newParticipant)

2: Broapcast(“:3mpCat:3Join:3”, myld, Nickname,y14, Ymy1a)

3 Wait ON ReceIve(“:3mpCat:3Join:3")

4: Global nickNewparticipant, ephemeral PublicPoint Newparticipant *= RECEIVE

5: UPDATE L1sTs(nickNewparticipant, ephemeral PublicPoint Newparticipant)

6 Global sessionld := COMPUTE SESSION Ibp(roomName, participantList, ephemeral PublicPointList)
7 S1GN AND SEND KEY CONFIRMATION AND SHARES

8 Wart ON RecEIvE(“:3mpCat:3KeyConfirmationShare:3”)

9 Global keyShareList, keyCon firmationList, signatureList := RECEIVE

10: VERIFY KEY CONFIRMATIONS AND SIGNATURES(keyCon firmationList, signatureList)
11: UPDATE SEssioN KEy
12: SEND(sessionDigest)

13: end procedure

re-run the one round key update algorithm. Also, failure to receive a heartbeat from a user will result in executing
Algorithm 4 excluding users which did not update their key.

Algorithm 4 Farewell

1: procedure SHRINK ON LEAVE(leaverId)

2 Remove leaverld from participantldList

3 Global sessionld := COMPUTE SESSION ID

4 if |participantList| > 1 then

5: S1GN AND SEND KEY SHARES

6 WAIT ON ReCEIVE(”:3mpCat:3KeyShare:3”)

7 keyShareList := Receive

8 UrDATE SEss1oN Key(keyShareList)

9 end if

10: end procedure

11: procedure SIGN AND SEND KEY SHARES

12: Global zy14-1,my1a := SHA — 512(kyuy1d,my14—1, sessionld)

13: Global zy 1, myra+1 := SHA — 512(kyy1d,my14+1, sessionld)

14: keySharemyld = Zinyld—1,myld D Zmyld,myld+1

15: originAuthSignature := ED25519S1GN(SignatureKey, sessionld | | zy14)

16: Broapcast(”:3mpCat:3KeyShare:3”, myld, keyShare,,, 14, origin AuthSignature) > we can send this encrypted but
leaving person can read it, hence theoretically it is the same as sending it unencrypted.

17: end procedure

VIIL.5 Secure Send and Receive

After the session key is established, participants will use Algorithms 5 and 6 to communicate securely.

On send, the protocol checks the status of the new ephemeral Diffie-Hellman and key share using messages it receives
from participants. It (re)sends any missing pieces. It also informs other participants which part of the key share is
received by that user. The metadata flag indicates if the message being sent only contains meta data (e.g. heatbeat) or
actual user communication.

On receive, the protocol updates who has which pieces of the key shares. The protocol also generates a new group
key. If the new key shares have been received from all participants or those who have not updated their key shares time
out on their heartbeat interval.
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Algorithm 5 Send

1:
2
3:
4:
5
6
7:

procedure SEND(Message)MetaMessage, message
keyShareMessage = NEWKEYSHAREMESSAGE(MetaMessage)
cryptMessage := AES CTR ENcryP1(sessionKey,message|keyShare Message)
origin AuthSignature := ED25519S1G6N(SignatureKey, sessionld | | cryptMetat Message)
sessionDigest := COMPUTE SESSION DIGEST(/ast Message)
Broapcast(“:3mpCat:3”, sessionld, cryptMessage, sessionDigest, origin AuthSignature,”:3”)

end procedure

Algorithm 6 Receive

1:
2:

procedure RECEIVE(sender, encrypted Message, origin AuthSignature, sessionDigest)

v = ED25519 VERIFYSIGNATURE(ephemeral PublicKeyList[Sender], sessionld||encrypted Message,
origin AuthSignature)

AssERT(v) or return Reject

message, keyShareMessage := AES CTR DEcryrt(sessionKey, encrypted Message)

isMetaMessage =UPDATENEWKEYSTATUS(keyShareMessage)

VERIFY DIGESTS(sessionDiges)

return isMetaMessage, message
end procedure

VIII.6 Common functions

Algorithm 7 Common functions used by other procedures in different stages

1: procedure GENERATE INITIAL PARAMTERS(1myId)

@

O P NG

11:

12:
13:
14:
15:
16:
17:
18:

19:
20:
21:

signaturePrivateKey := RANDOMBITS(256)

Xmy1q := ED25519 ScALAR(signaturePrivateKey)) > This is both Diffie-Hellman secret and ephemeral signature
private key

Ymyld := Xmy1aP return x,y

: end procedure
: procedure VERIFY KEY CONFIRMATION AND SIGNATURES(signatureList, keyCon firmationList)

for all participant € participantList do
if keyCon firmationList[participant|[myld] # SHA — 512(Kyuy1d,participants Umy14) then
Hart
else
if ED25519VERIFYSIGNATURE(ephemeral PublicKeyList[particicpant|, sessionld||keyShares[myld],
origin AuthSignature) = Fail then
HArLr
end if
end if
end for
end procedure
procedure COMPUTE SESSION Ip(participantList, ephemeral PublicPointList)
return SHA — 512(roomeName, zip(participantList, ephemeral PublicPointList)) >
zip([a, ), [¢,d]) := [(a,c), (b,d)]
end procedure
procedure VERIFY SIGNATURES(longPublicList,schnorrRandomPointList, )
end procedure
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Algorithm 8 ...Common functions continued

22: procedure SIGN AND SEND KEY CONFIRMATION AND SHARE(schnorrRandomPointList)
23: for all participant € participantList do:

L I Xmyld .
24: kmyld,participant C H(g pmyldLpparticipant]/pmticipant) > Trlple DH
25: kcmyld = kcmyld‘H(kmyld,participantl uparticipant)

26: end for

27: Global zy14-1,my1a := SHA — 512(kyuy1d,my14—1, sessionld)

28: Global zy 14, myta+1 := SHA — 512(kyuy1d,my14+1, Sessionld)

29: keySharemyld = Zmyld—1,myld D Zmyld,myld+1

30: originAuthSignature := ED25519S1GN(SignatureKey, sessionld | | zy14)

31: Broapcast(“:3mpCat:3KeyConfirmationAndShare:3”, myld, keySharey,,14, origin AuthSignature, ke, 1)
32: end procedure

33: procedure UPDATE SESSION KEY(keyShareList)

34: i:=myld

35 forall doj € [i,...,i+n—1]

36: zj i1 = zj_1,; D keyShareListe[j + 1]

37: end for > recovered z;_1 ; should be equal to its original value
38:  Global sessionKey := SHA — 512(z; ;,1]j € [1..1])

39: end procedure

40: procedure SIGN PARAMS UPDATE SEssION KEy(toBeSigned, signatureList, keyShareList)

41: UrpATE SEssION KEy

42: toBeSigned := SHA — 512(sessionld, ||SHA — 512 (verifierList, ephemeral PublicPointList, keyShareList)))
43: signature,, ;4 :=SIGN SESSION AND SEND(toBeSigned)

44: Broapcast(”:3mpCat:3SignedSessionParameters:3” signature,,,14)

45: end procedure

46: procedure COMPUTESESSIONDIGEST(last Message)

47: for all message in Messages Received from lastDigested Message+1 till lastMessage do
48: sesionDigest := SHA-512(sessionDigest, message),

49: LRU CacHE StoRE DIGEsT(sessionDigest, message)

50: end for

51: return sessionDigest,last Messageld

52: end procedure

IX. CONCLUSION

multi-party chat protocol. We have referenced the adversarial models which the protocol is supposed to resist, with
proof of resistance to the adversarial model presented in the original papers. We plan to publish comprehensive proof
for this algorithm against the presented adversaries shortly.

IN this document, we presented an early first draft of mpCat. We hope for this draft to evolve into a usable encrypted
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